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Abstract Recently, the aggregate association index (or AAI) was proposed to quantify the strength of the 

association between two dichotomous variables given only the marginal, or aggregate, data from a 2x2 

contingency table. One feature of this index is that it is susceptible to changes in the sample size; as the 

sample size increases, so too does the AAI even when the relative distribution of the aggregate data remains 

unchanged. This paper proposes two adjustments to the AAI that help to overcome this problem. We 

consider a simple example using Fisher’s twin criminal data to demonstrate the application of the AAI and 

its adjustments. 
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1 Introduction 

The analysis of aggregate information for the study of two dichotomous variables has a long history. Fisher 

(1935, page 48) was one of the first to consider such a study and invited us to “blot out the contents of the 

table, leaving only the marginal frequencies”. In his discussion, Fisher (1935) concluded that the marginal 

information provided only “ancillary information” for inferring the missing cell values. Others to have 

discussed this issue include, but are not limited to Plackett (1977), Berkson (1978), Haber (1989) and Yates 

(1984).  

 

Related to the issue are those techniques concerned with the ecological inference of aggregate data. They 

involve the estimation of the cells (or some simple transformation of them) for stratified 2x2 contingency 

tables given only aggregate data. One may refer to, for example, Goodman (1953), Freedman et al (1991), 
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King (1997), Wakefield (2004) and Steel, Beh and Chambers (2004) for detailed strategies for making such 

inferences. Hudson, Moore, Beh and Steel (2010) demonstrated the effectiveness of a variety of strategies 

for performing ecological inference by considering early New Zealand gendered election data.  

 

The fundamental problem of all of these techniques is that, since the cells of the contingency table are 

unknown, numerous assumptions (all of which are untestable) need to be made about their structure. As an 

alternative approach to analysing aggregate data, involves the aggregate association index, or AAI, proposed 

by Beh (2008, 2010). Underlying the theory of the AAI is Pearson’s chi-squared statistic. Therefore, rather 

than estimating the cells (or some function of them) of multiple 2x2 contingency tables, the purpose of the 

AAI is to quantify the likelihood that a statistically significant association exists between the two 

dichotomous variables. Unlike the numerous ecological inference techniques that are available, the AAI is 

applicable to the analysis of a single 2x2 table.  

 

One feature of the AAI is that, as one considers an increase in the sample size, the AAI increases. This is 

because Pearson’s chi-squared statistic is susceptible to changes in the sample size of the contingency table. 

This, therefore, can lead to the true nature of the association between the variables being masked by the 

magnitude of the sample size. Therefore, this paper explores two adjustments to the AAI that reduce the 

impact of the sample size on the index, when the relative marginal frequencies remain constant. A simple 

empirical study of the AAI and its adjustments will be considered through the analysis of Fisher’s (1935) 

twin criminal data which motivated his discussion of the analysis of aggregate data.  

 

2 The Aggregate Association Index 

2.1 Notation 

Table 1 gives the general form of a 2x2 contingency table, where two dichotomous variables are cross 

classified. Suppose the original sample size of the table is    and     denotes the (   )th cell frequency. 

Therefore, let          ⁄  be the proportion of classifications made into this cell for       and      . 

The     row     column marginal frequencies are denoted by     ∑    
 
    and     ∑    

 
    respectively 

so that ∑ ∑     ∑     ∑       
 
   

 
   

 
   

 
   . Thus, let          ⁄  and          ⁄  be the ith row 

marginal and jth column marginal proportions respectively.  

Table 1: A general 2x2 contingency table 

 Column 1 Column 2 Total 

Row 1             
Row 2             

Total            

 

When cell frequencies of Table 1 are unknown, so that only the aggregate data is available, Duncan and 

Davis (1953) considered the upper and lower bounds of      
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Rather than considering    , much of the attention given to the ecological inference techniques focuses on 

the conditional proportion           . Therefore,    is bounded by 
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Beh (2010) showed that when only marginal information is available, and a test of the association is made at 

the  level of significance, the bounds of    are 
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where   
  is 1 –  percentile of the chi-squared distribution with 1 degree of freedom. Since this paper 

considers the case where each of the cell frequencies of Table 1 is unknown, the proportion of interest,   , is 

therefore also unknown. Despite this, Beh (2008, 2010) demonstrated that Pearson’s chi-squared statistic of 

Table 1 can be expressed as a quadratic function of this proportion such that 
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)
 
(
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Figure 1: A general graphical display of the AAI
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2.2 The Index 

Figure 1 provides a graphical representation of the relationship between Pearson’s statistic, (3), and the 

bounds of (1) and (2); note that     and    in the figure refer to the extremes of (2). The null hypothesis of 

independence between the dichotomous variables is rejected when the observed Pearson chi-squared value 

(at some value of   ) exceeds the critical value of   
 . Therefore the region under the curved defined by (3) 

but lying above the critical value   
 , indicates where a statistically significant association exists between the 

variables. The relative size of this region, when compared with the total area under the curve, is quantified 

by 

      [  
  

 {(  (  )   ) (     (  ))}

   {(      )
  (      )

 }
 

{(  (  )    )
  (  (  )    )

 }

{(      )
  (      )

 }
]  (4) 

where   
 

    
 (

      

      
) and         ; see Beh (2010). Equation (4) is referred to as the aggregate 

association index, or more simply the AAI of Table 1, and quantifies, for a given , how likely a particular 

set of fixed marginal frequencies will enable the user to conclude that there exists a statistically significant 

association between the variables. If        then, given only the aggregate data, it is highly likely that an 

association exists. However,      reflects that it is highly unlikely that such an association exists. 

3 Adjusted Aggregate Association Index 

Equation (3) shows that the magnitude of Pearson’s chi-squared statistic is highly dependent on the sample 

size,   . For example, if the original sample size of Table 1 is increased by a factor of     so that 

     , then Pearson’s statistic increases by a factor of  . This has been long understood and prompted 

Pearson to consider his phi-squared statistic. Everitt (1977, pp. 56), and many others, also discussed this 

feature of the statistic. As we shall now discuss, and propose a remedy to, the magnitude of the AAI is very 

much affected by the magnitude by which the sample size is increased,  .  

Consider equation (4). It may be alternatively expressed as 

      [   (  ) (
     

  (  )   (  )
)    

{
  

 {(  (  )   ) (     (  ))}
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  (      )

 }
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 }

(      )
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 }]   (5) 

where  

 (  )  
  (  )   (  )

     
    (6) 

Suppose the level of significance, , at which a test of independence is made remains fixed, as does the 

relative marginal proportions for the row and column categories. Multiplying the sample size by a     

does not change the relative marginal information. However, it does impact on the sample size and the row 

and column totals of the contingency table. Increasing the original sample size of Table 1,   , by 

multiplying it by     will result a new sample size       and increase Pearson’s chi-squared statistic. 
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Therefore, this narrows the interval (2) and decreases the magnitude of  (   ). This therefore leads to an 

increase in the AAI, even though the relative marginal information remains unchanged. Specifically, as 

   ,  (   )    , and        . Similarly, as     ,  (   )    , and      . Therefore, to help 

minimise the impact that increasing the sample size has on the AAI, we shall adjust its calculation by 

considering various specifications of  (  ), subject to    (  )   , that may be considered as an alternative 

to (6). This adjusted AAI is denoted by 

  
     [   (  )

 (
     

  ( )   ( )
) {
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}]       (7) 

where  (  )
  is the adjustment of (6) and may be subjectively, or objectively, determined so that  0  (  )

  

 . Here we shall consider two simple adjustments. 

Adjustment 1 

The first adjustment is to consider a subjective choice of  (  ) that remains constant for all  . A conservative 

value, and one that is used in the following section, is  (  )
     . 

Adjustment 2 

One may note that, from (2),   (  )    (  )      √
  

 

  
(
      

      
) . Therefore, a second adjustment to (6) is 

to consider  

 (  )
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Since this adjustment is equivalent to (6), the adjusted AAI, (7), is 
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Hence, under this adjustment, the relationship between the original AAI, (4), and its adjusted index, (8), is 

  
    √

 

  
    (√

 

  
  )  

Thus, if the original sample size is increased by a factor of  , where    , so that       , then  

  
    √     (√   )    (9) 

Hence,   
     for any reasonably large  . 
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4   Empirical Study 

Consider Table 1 that was originally studied by Fisher (1935). It cross-classifies 30 criminal twins according 

to whether they are a monzygotic twin or a dizygotic twin. The table also classifies whether their same sex 

twin has been convicted of a criminal offence. Beh (2010) analyses Table 1 using the original AAI,   , and 

here we consider the adjusted index,   
 , (7). Pearson’s chi-squared statistic for Table 1 is 13.032, and with a 

p-value of 0.0003, shows that there is a statistically significant association between the two dichotomous 

variables. For this data                 and shows that about 77% of those monozygotic criminal 

twins in the sample have a same sex sibling who has also been convicted of a crime. Fisher (1935, page 48) 

considered the case where the reader was invited to “blot out the contents of the table, leaving only the 

marginal frequencies”. Doing so, when testing the association at the 5% level of significance, the AAI, 

calculated from (4), is 61.83. Therefore, based only on the analysis of the aggregate data of Table 2, it is 

likely that there exists a statistically significant association between the variables.  

 
Table 1: Fisher’s (1935) criminal twin data 

 Convicted Not Convicted Total 

Monozygotic 10 3 13 

Dizygotic 2 15 17 

Total 12 18 30 

 

Suppose we now consider the case where the larger samples were selected, but retaining the same 

distribution of the marginal proportions. For example, doubling the sample size leads to twice the Pearson 

chi-squared statistic of the original data. Hence, the AAI increases. Figure 2 graphically shows the impact of 

the AAI as   increases for    ranging from 1 to 20; that is, considering a sample size ranging from 30 to 

600. When      ,            , indicating that it is now extremely likely that an association exists 

between the variables of Table 1 (given only the aggregate data). 

 

Our aim is therefore to stabilise the magnitude of the AAI as the sample size increases. This will allow us to 

obtain a clearer indication of the nature of the association by reducing the impact of the magnitude of  , and 

can be done by considering the two adjusted AAI’s. With the original sample size, the first adjustment – 

 ( )
      –      

       . For the second adjustment, using equation (8), as expected      
       ; 

identical to the original AAI. As the sample size increase, these adjusted versions of    do increase, but 

more slowly than   . At       (    ), the first adjustment yields      
       , while the second 

adjustment leads to      
       . Note that, this second adjusted AAI can be obtained by considering 

equation (9): 

 

  
       √      (√    )        

 

Figure 2 shows that the rate of change of both      
  indices more stable, and less than, with the original 

magnitude of the AAI as   increases from 1 to 20. 
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Figure 2: Comparison of      
  using the first adjustment (blue line), and the second adjustment (green line) 

with the original AAI (dashed line) as n increases. 

 

5 Discussion 

In this article we have presented two adjustments that aim to minimize the impact that the sample size of a 

2x2 contingency table has on the AAI when analysing the association between the variables using only the 

aggregate information. Both adjustments do not inflate the magnitude of the index as severely as the sample 

size does on the original index. Of the two proposed adjustments, the simplicity of the first is very appealing. 

Based on the empirical study presented, it performs just as well as equation (9). However, equation (9) is 

consistent with    at the original sample size and, as Figure 2 of our empirical study shows, appears more 

consistent as   increases. This study provides only an introduction to possible adjustments of the AAI that 

stabilise the impact of the sample size. More comprehensive research still needs to be undertaken to reveal 

the features of these, and other, adjustments. For example, one area of that requires further investigation is 

the identification  (  )
  that minimises the rate of change of   

 , and hence providing a more stable index, as 

the sample size increases. 
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